
COSC 101 Lecture #19 Handout: While loop patterns Fall 2014

In this handout we look at some common use cases for while loops. These are problems where
you must use a while loop because you don’t know at the outset how many times you need to loop.

1 Polling pattern

The polling pattern arises when we want to ask the user for some input and keep re-prompting
until we receive an input that is considered acceptable. For example, websites use this pattern when
they want their users to create strong passwords that have a minimum length, at least one number,
etc. The website prompts the user repeatedly until the user finally enters an acceptable password.

Consider this example: write a program that asks the user to type a four letter word – re-prompting
them until they enter a string with four characters – and then prints a censored version of the word
(asterisks for the middle two letters). There are three ways to solve this problem.

First approach: artificially cause while condition to be True so that loop is executed at least once:

word = ’’ # dummy v a l u e n o t 4 l e t t e r s l ong
while len(word) != 4:

word = raw input("Enter word: ")
print "Censored word", word[0]+’∗∗’+word[−1]

Second approach: copy some loop code and place it above the loop (a “loop and a half”):

word = raw input("Enter word: ")
while len(word) != 4:

word = raw input("Enter word: ")
print "Censored word", word[0]+’∗∗’+word[−1]

Third approach: use True as the while condition and rely on a break statement to exit the loop:

while True:
word = raw input("Enter word: ")
if len(word) == 4:

break
print "Censored word", word[0]+’∗∗’+word[−1]

Use break sparingly as multiple breaks can make code difficult to read. You may not be allowed
to use it on some exam problems or assignments.

In many settings, it’s useful to create a separate function that checks the validity on the input and
returns a boolean value indicating whether the input is acceptable. For example,

def is valid(word):
return len(word) == 4

word = raw input("Enter word: ")
while not is valid(word):

word = raw input("Enter word: ")
print "Censored word", word[0]+’∗∗’+word[−1]

1 of 4

COSC 101 Lecture #19 Handout: While loop patterns Fall 2014

2 Sentinel pattern

In normal society, a sentinel is a guard; in the programming world, a sentinel is a special value
that marks the end of an input sequence. The sentinel pattern arises when we want to ask the
user for a sequence of inputs. For example, we might want to ask the user to enter a sequence of
homework grades and then have the program compute the average grade. One way to solve this is
have the user tell us, in advance, exactly how many grades they plan to enter. A more user-friendly
way is to allow the user to type in a sentinel value to signal to the program that they are done. In
this example, -1 might be a good sentinel since grades are usually non-negative!

Consider this example: write a program that asks the user to type in a sequence of numbers and
then prints their sum. The user can enter 999 to signal the end of the input. The number 999 is the
sentinel and should not be included in the sum. There are two ways to solve this problem.

First approach: use a “loop and a half”:

total = 0
num = int(raw input("Enter num (999 to quit): "))
while num != 999:

total += num # num must n o t be s e n t i n e l
num = int(raw input("Enter num (999 to quit): "))

print "Total is", total

Second approach: use True as the while condition and rely on a break statement to exit the loop:

total = 0
while True:

num = int(raw input("Enter num (999 to quit): "))
if num == 999: # check f o r s e n t i n e l

break
total += num

print "Total is", total

3 Exercises

Solutions are presented in class and also included in the moodle version of this handout.

1. Write a “guess a number” game. The computer chooses a secret number at random from 1 to
10. The user can make guesses and the computer gives hints (“higher” or “lower”). The game
ends when the user guesses the number or gives up and types a negative number (a sentinel).

Solution: First solution uses a loop and a half:

import random
secret = random.randint(1, 10)
guess = int(raw input("Guess: "))

2 of 4

COSC 101 Lecture #19 Handout: While loop patterns Fall 2014

while guess != secret and guess != −1:
if guess > secret:

print "Lower"
else:

print "Higher"
guess = int(raw input("Guess: "))

if guess == secret:
print "You guessed it!"

else:
print "You were so close!",
print "The secret was", secret

Solution: An alternative solution uses a break statement:

import random
secret = random.randint(1, 10)

while True:
guess = int(raw input("Guess: "))
if guess == −1 or guess == secret:

break
elif guess > secret:

print "Lower"
else:

print "Higher"

if guess == secret:
print "You guessed it!"

else:
print "You were so close!",
print "The secret was", secret

2. Take the sentinel example from Section 2 but calculate the average instead of the total.

Solution:

total = 0
count = 0
num = int(raw input("Enter num (999 to quit): "))
while num != 999:

3 of 4

COSC 101 Lecture #19 Handout: While loop patterns Fall 2014

num must n o t be s e n t i n e l
total += num
count += 1
num = int(raw input("Enter num (999 to quit): "))

if count > 0:
print "Average is", float(total)/count

else:
print "You didn’t enter any numbers, man!"

3. Previous problem but negative numbers are not allowed and should not be included in the
average. Re-prompt the user if they are enter a negative number.

Solution:

total = 0
count = 0
num = int(raw input("Enter num (999 to quit): "))
while num != 999:

num must n o t be s e n t i n e l
if num >= 0:

total += num
count += 1

else:
print "Number must not be negative!"

num = int(raw input("Enter num (999 to quit): "))
if count > 0:

print "Average is", float(total)/count
else:

print "You didn’t enter any numbers, man!"

Adapted from materials by Reges and Zingaro.

4 of 4

