Measuring Cache Performance

One level of cache

vs

Two levels of cache
Parameters needed

• One level:
 • Miss rate for instructions
 • Miss rate for data
 • Ratio of data access (load/store) instructions
 • CPI
 • Clock speed
 • Time penalty for miss
Example – single cache

• One level:
 • Miss rate for instructions 2%
 • Miss rate for data 3%
 • Ratio of data access (load/store) instructions 30%
 • CPI 1.5
 • Clock speed 2 GigaHertz
 • Time penalty for miss 100 nanoseconds
Compute effective CPI with cache misses
How much better would “perfect cache” be

• Data miss rate per instruction: 0.30 x 0.03 = 0.009
• Total miss rate per instruction: 0.02 + 0.009 = 0.029
• 2 GHz = 2 x 10^9 cycles/sec or 0.5 ns per cycle
• 100 ns penalty for miss = 200 cycles
• Miss penalty per instruction = 200 cycles x 0.029 = 5.8 cycles

• Total CPI = 1.5 + 5.8 = 7.3

• Perfect cache means no misses, so 1.5 CPI, better by 7.3/1.5 = 4.87
Add second level cache

• Parameters for 1st level the same.
 • Total miss rate per instruction: 0.02 + 0.009 = 0.029

• Parameters for second level:
 • Miss rate: 0.25% (2nd level cache much larger)
 • Response time = 5 ns = 10 cycles
 • Response time from main memory still 100 ns = 200 cycles
Analysis

• Miss penalty for 1st to 2nd level cache:
 miss rate per instruction x 10 cycles = 0.029 x 10 = 0.29 cycles

• Miss penalty for 2nd level to memory:
 miss rate 2nd level x 200 cycles = 0.0025 x 200 = 0.5 cycles

• Total CPI = 1.5 + 0.29 + 0.5 = 2.29

• Speedup due to 2nd level cache: 7.3/2.29 = 3.19
Other factors

• Out-of-order execution can sometimes hide miss penalties, especially for 1st level cache (usually not for second level)

• 1st level cache should focus on fast hit time
 • Much smaller and often smaller block size
 • This can allow faster cycle time or fewer pipeline stages

• 2nd level cache focus on minimizing miss rate
 • Much larger
 • Larger blocks
 • Higher level of associativity